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Outline of this Talk

  Fluctuation-dissipation vs quantum regression 

(Some) previous quantum friction calculations

Atom-surface interaction: non-equilibrium

  Moving oscillator

Atom-surface interaction: equilibrium

  Fluctuation-dissipation vs quantum regression 

  Moving two-level atom

Tuesday, August 13, 13



A variety of predictions
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  Volokitin & Persson 2002 Same result (electric dipole + Lorentz force)
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  Barton 2010 Same result SB

  Scheel & Buhmann 2009 two- (multi-) level atom + master equation + QRT

  Kardar et al 2013 Same result as TW+VP+DK
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Equilibrium case
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T = 0  Zero temperature 

 Uncorrelated initial atom+field/matter

 Electric field operator 

 Normal force on the atom

Cij(t, t� ⌧) ⌘ hd̂i(t)d̂j(t� ⌧)i

 Ground state atom + vacuum field/matter
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CP: Fluctuation-dissipation
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Eg.: Harmonic oscillator model

 Exact polarizability ↵(!) = (e2/m)[!2
a � !2 � (e2/m)G(ra, ra,!)]
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 Green tensor: vacuum+scattering contributions G = Gv +Gs

 Vacuum-dressed polarizability
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CP: Quantum regression
 Onsager regression theorem: The average regression of fluctuations obeys the 

same laws as the corresponding irreversible process (Onsager 1931)

 Quantum regression hypothesis (aka “theorem”, QRT) (Lax 1963)

C(t, t� ⌧) ⌘ hd(t)d(t� ⌧)i = hd2(t)ie�i(!a�i�a/2)⌧
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CP: Quantum regression
 Onsager regression theorem: The average regression of fluctuations obeys the 

same laws as the corresponding irreversible process (Onsager 1931)

 Quantum regression hypothesis (aka “theorem”, QRT) (Lax 1963)

• Widely used in quantum optics 
• Approximate: weak system-bath coupling, near resonance
• Exact quantum generalization of Onsager regression: FDT
• FDT and QRT predict different decay of correlations

(Ford+O’Connell 1996)

- “Short” times (               ): exponential decay  ⌧�a ⌧ 1

- “Large” times (               ): power-law decay ⌧�a � 1 QRT 6= FDT
QRT = FDT

C(t, t� ⌧) ⌘ hd(t)d(t� ⌧)i = hd2(t)ie�i(!a�i�a/2)⌧
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same laws as the corresponding irreversible process (Onsager 1931)

 Quantum regression hypothesis (aka “theorem”, QRT) (Lax 1963)
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Non-equilibrium case
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NEQ FT and quantum friction
 No general results as in the equilibrium case 

However, it is still possible to draw general 
conclusions about the frictional force in the low-
velocity limit.

Chetrite et al. 2008
Baiesi et al. 2009
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NEQ FT and quantum friction
 No general results as in the equilibrium case 

However, it is still possible to draw general 
conclusions about the frictional force in the low-
velocity limit.
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FTD vs QRT and q. friction

 The exact FDT predicts a stationary frictional force at zero temperature 
that scales (at least) as velocity cubed, independent of the model for the atom’s 
polarizability.

Tuesday, August 13, 13



FTD vs QRT and q. friction

 The exact FDT predicts a stationary frictional force at zero temperature 
that scales (at least) as velocity cubed, independent of the model for the atom’s 
polarizability.

  In contrast, QRT gives a linear-in-velocity stationary frictional force
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Using the QRT for the correlator in the static case,
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Moving harmonic oscillator

 Model the atom as a linear harmonic oscillator

 Dipole moment
d̂ = ex̂

 Equation of motion can be solved exactly, including transients 
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 Laplace transform (t > ts)
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Depends on initial conditions. Decays to zero at large times
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Non-equilibrium FDT

 Using the exact solution for the oscillator model, one can prove the 
following exact, non-equilibrium fluctuation-dissipation relation
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 Non-equilibrium FDT in classical models have the same form
Chetrite et al. 2008

 Using the                above one can verify thatS(!; v
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Moving two-state atom

 Model the atom as a two-level system (generalization to multi-level possible)

 Dipole moment d̂ = d�̂
x

 Non-linear equation of motion. Exact solution not possible 
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(0)d · Ê0(ra(t), t)

S(!; v
x

) ⇡ 4!2
a

⇡~ dd

Z
d2k

(2⇡)2
✓(! + k

x

v
x

)Tr[ddG
I

(k, z
a

,! + k
x

v
x

)]

[!2
a

� (! � i0+)2][!2
a

� (! + i0+)2]

Ffric / v3
x

h�̂
x

(t)�̂
x

(t0)i = ?

Tuesday, August 13, 13



Conclusions

  Atom-surface quantum friction from general non-equilibrium stat. mech.

 Non-equilibrium FDT predicts a cubic-in-v frictional force

 At high temperatures (classical limit),                        , and linear-in-v frictionQRT = FDT

QRT 6= FDT 

 Same analysis possible for quantum friction between macroscopic bodies

 Note: all the above is valid in the true stationary, long-time limit, after all 
transients have died out.  For shorter times, the atom-friction force is linear-
in-v, in agreement with (some) previous calculations 
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